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Learning to avoid danger by observing others can be relatively safe, because it does not
incur the potential costs of individual trial and error. However, information gained through
social observation might be less reliable than information gained through individual expe-
riences, underscoring the need to apply observational learning critically. In order for obser-
vational learning to be adaptive it should be modulated by the skill of the observed person,
the demonstrator. To address this issue, we used a probabilistic two-choice task where par-
ticipants learned to minimize the number of electric shocks through individual learning
and by observing a demonstrator performing the same task. By manipulating the demon-
strator’s skill we varied how useful the observable information was; the demonstrator
either learned the task quickly or did not learn it at all (random choices). To investigate
the modulatory effect in detail, the task was performed under three conditions of available
observable information; no observable information, observation of choices only, and obser-
vation of both the choices and their consequences. As predicted, our results showed that
observable information can improve performance compared to individual learning, both
when the demonstrator is skilled and unskilled; observation of consequences improved
performance for both groups while observation of choices only improved performance
for the group observing the skilled demonstrator. Reinforcement learning modeling
showed that demonstrator skill modulated observational learning from the demonstrator’s
choices, but not their consequences, by increasing the degree of imitation over time for the
group that observed a fast learner. Our results show that humans can adaptively modulate
observational learning in response to the usefulness of observable information.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Learning to avoid potentially dangerous events through
trial and error can be a painful experience. Learning the
same thing indirectly by observing the actions of others
can be both safe and efficient. For example, watching a pair
of boxers go head to head in a fight is a less painful way of
learning how to avoid the harmful consequences of boxing
compared to learning by stepping into the ring oneself.
One way to minimize harm during boxing is to learn which
side is best to lean in response to a straight punch. This can
be learned in a safe manner through observation of
someone else, a demonstrator, by attending to (1) which
side the other person, the demonstrator, chooses to lean
and (2) the consequences of that choice. Learning a
response or choice observationally will here be referred
to as observational learning or, when speaking of aversive
learning, observational avoidance learning. Learning an
association, rather than a response, through observation
will be referred to as observational associative learning.
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Fig. 1. Mean demonstrator performance (defined as the percentage of
optimal choices) per trial in each block differed between groups; the
performance level increased rapidly for the SD group while the perfor-
mance level remained at chance for the UD group.

I. Selbing et al. / Cognition 133 (2014) 128–139 129
Observational learning of choices and actions is likely to
be modulated by the demonstrator’s degree of skill,
defined here as his or her ability to minimize negative or
maximize positive consequences. The primary reason for
this is that the demonstrator’s skill is predictive of the
degree to which his/her choices reflect the underlying con-
tingency between choice and consequence, affecting the
usefulness of observing the choices. In many real life learn-
ing situations where we can observe others, information is
often limited. We might not know which choices were
available to the demonstrator and consequences of the
choices might be delayed. Also, we often lack knowledge
of the skill or experience of those we observe, for example,
when the demonstrator is unknown to us. It is therefore of
great importance to be able to evaluate and use various
sources of observable information critically. Recent
research has shown a modulatory effect of demonstrator
skill on observational learning in humans (Apesteguia,
Huck, & Oechssler, 2007) where participants’ choices were
influenced more when demonstrators appeared more
skilled than themselves, and observational learning in
other (non-human) social animals (Kendal, Rendell, Pike,
& Laland, 2009) where food patch choices in fish were
influenced more by successful than unsuccessful conspe-
cifics. This research has, however, not connected with
research describing the processes underlying observational
associative learning, such as associative learning of fear in
humans (Olsson & Phelps, 2007) as well as social avoidance
learning in other animals (Kavaliers, Choleris, & Colwell,
2001). Furthermore, it is unknown how the skill of the
demonstrator modulates observational learning from
choices and consequences, respectively.

Several studies have shown that observational learning
and other forms of social learning can outperform individ-
ual learning (Feldman, Aoki, & Kumm, 1996; Kameda &
Nakanishi, 2003; Merlo & Schotter, 2003; Rendell et al.,
2010). In particular, social learning is theorized to be
especially advantageous when negative consequences
can be costly (Dewar, 2004; Kendal, 2004; Webster &
Laland, 2008), such as in dangerous environments
(Coolen, van Bergen, Day, & Laland, 2003; Galef, 2009).
Despite this, studies of observational learning have almost
invariably focused on learning within the appetitive
domain (e.g. Apesteguia et al., 2007; McElreath et al.,
2008; Merlo & Schotter, 2003). In contrast, avoidance
learning depends on reinforcers in the form of punishing
aversive events (Dayan & Balleine, 2002) or the rewarding
omittance of an aversive event (Rescorla, 1969). For
instance, the boxer in our previous example learns the
correct defense when choices are punished by a hit, a nat-
urally aversive consequence, a primary reinforcer. Previ-
ous research of observational associative learning in
humans have commonly used primary reinforcers, such
as shocks (Olsson, Nearing, & Phelps, 2007), whereas
studies of observational learning have used secondary
reinforcers, such as money (e.g. Burke, Tobler, Baddeley,
& Schultz, 2010; Merlo & Schotter, 2003; Nicolle,
Symmonds, & Dolan, 2011; Suzuki et al., 2012). Our first
aim with the present study was thus to extend the liter-
ature on observational learning into the aversive domain
using primary reinforcers.
Although observational learning often is thought of as
safe and efficient, observational (social) information can
be outdated or inaccurate and observational learning
should thus be applied critically (Enquist, Eriksson, &
Ghirlanda, 2007; Kendal, Coolen, van Bergen, & Laland,
2005). For instance, available theories on social learning
strategies (Laland, 2004; Schlag, 1999) suggest that copy-
ing should be more common if the demonstrator is suc-
cessful. In humans, this theory is supported by empirical
research where explicit feedback of the participant’s and
the demonstrator’s overall performances is given
(Apesteguia et al., 2007; Mesoudi, 2008; Morgan, Rendell,
Ehn, Hoppitt, & Laland, 2012) and by studies showing that
people take more advice from an experienced or trained
advisor than a novice (Biele, Rieskamp, & Gonzalez, 2009;
Sniezek, Schrah, & Dalal, 2004). To our knowledge, no
human studies have investigated if and how demonstrator
skill modulates observational avoidance learning when
explicit information of skill level is not given. Our second
aim was thus to study the impact of the demonstrator’s
skill on observational learning in a paradigm where skill
level could only be inferred by observation of the demon-
strator’s choices and consequences.

To target the aims of our study, we adopted an experi-
mental paradigm previously used with secondary reinforc-
ers that allowed us to disentangle observational learning
from choices and consequences (Burke et al., 2010). In
our design (described in detail in Fig. 2), participants
learned a sequential probabilistic two-choice task using
naturally aversive reinforcers. In addition to making their
own choices, participants were also at times able to
observe a demonstrator that learned the same task. The
choices were reinforced by electric shocks so that one
out of a pair of choices was punished more often than
the other. To investigate the influence of available informa-
tion on observational learning trials belonged to one of
three observational learning conditions with varying
amounts of available observable information: (1) no obser-
vable information, individual learning (No Observation),
(2) observable information of the demonstrator’s choices
(Choice Observation) and (3) observable information of
both the demonstrator’s choices and the consequences of



Fig. 2. A.1., B.1.: Varying intertrial interval (ITI) displaying a fixation-cross (2–6 s). A.2., B.2.: Choice stimuli presentation (2 s). A.3.: Circled fixation-cross
used as a ‘‘go-signal’’ requiring participants to press the up-arrow in order to later observe the demonstrator’s choices or both choices and consequences
(ensuring that participants were attentive to the display, 1 s). B.3.: Circled fixation-cross used as a ‘‘go-signal’’ requiring participants to make a choice with
the left or right arrow (1 s). A.4.: Demonstrator’s choice was indicated with a white frame during Choice Observation and Choice-Consequence Observation
(1 s). During No Observation both stimuli were framed. B.4.: Participant’s choice indicated with a white frame (1 s). A.5.: A symbol was shown to indicate
the consequence of the demonstrator’s choice, a shock symbol or crossed shock symbol (Choice-Consequence Observation only) or a simple line when no
information of consequences was given (2 s). B.5.: A symbol was shown to indicate the consequence of the participant’s choice, a shock symbol or crossed
shock symbol. The onset of the shock symbol display coincided with the administration of an electric shock to the participant’s wrist (100 ms). If the
participant did not make a required response during A.3., both choice stimuli were framed during A.4., and during A.5. (regardless of condition) a non-
informative line was shown as a symbol. If the participant did not make a required response during B.3., both choice stimuli were framed during B.4., and
during B.5. the consequence was randomized.
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those choices (Choice-Consequence Observation). To
investigate the effect of demonstrator skill, participants
were divided into two groups that either observed a skilled
demonstrator (SD) that easily learned the task and had a
high level of performance or an unskilled demonstrator
(UD) that did not learn but instead selected choices
randomly over the entire course of the experiment.

To enhance understanding of how demonstrator skill
might modulate observational avoidance learning, we ana-
lyzed performance using reinforcement learning (RL) mod-
eling (Sutton & Barto, 1998). This approach allowed us to
formalize how a participant’s expectations (e.g. of a certain
consequence following a specific choice) were updated
over time using prediction errors, defined as deviations
from expectations (Sutton & Barto, 1981). Prediction errors
are believed to guide learning when predictions are vio-
lated and have been linked to specific neural markers dur-
ing learning from both rewarding (Rushworth, Mars, &
Summerfield, 2009) and punishing events (Delgado, Li,
Schiller, & Phelps, 2008). In addition, the RL-framework
has been linked to prediction learning outside of the
rewarding/punishing domain, including social learning
such as prediction of other people’s actions (Burke et al.,
2010) and trustworthiness (Behrens, Hunt, Woolrich, &
Rushworth, 2008).

We hypothesized that access to observable information
would improve performance compared to when no
observable information was available (individual learning)
similar to the results previously shown by Burke et al.
(2010). Moreover, we predicted that participants observing
a skilled demonstrator would let observable information
guide selection of choices to a higher degree than those
observing an unskilled demonstrator. This was expected
to be most apparent under the Choice Observation
condition where observed choices provide the only
observational information regarding the underlying
choice-consequence contingency. Since a demonstrator’s
choices will reflect this contingency only if the demonstra-
tor has an ability to learn, observing choices will be helpful
only for the SD group. We used RL-modeling to formalize
and describe the separate influences of demonstrator skill
on learning from observation of choices and observation
of their consequences. Moreover, RL-modeling allowed us
to compare different models of observational learning to
understand how observable information was used.
2. Materials and methods

2.1. Participants

42 self-reportedly healthy participants were recruited
and paid for participation in the experiment approved by
the local ethics committee. 2 Participants were excluded
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due to performance levels below random leaving a total of
40 participants that were randomly assigned to either the
SD (skilled demonstrator) group or the UD (unskilled dem-
onstrator) group (SD: n = 20, 13 women, mean
age = 23.85 years [SD = 5.76]; UD: n = 20, 9 women, mean
age = 25.00 years [SD = 5.37]). Participants were informed
that they would perform the experiment together with
another person and upon arrival they met but did not
interact further with a sex-matched confederate (male:
age 30, woman: age 26) presented to them as the other
participant (i.e. the demonstrator). Before starting, all par-
ticipants signed an informed consent form and a facial
photo was taken for use in the computerized choice task.

2.2. Material

The experiment was presented using E-prime (Psychol-
ogy Software Tools, Inc., www.pstnet.com). Mild electric
shocks consisting of 100 ms DC-pulses (STM200; Biopac
Systems Inc.) applied to the left wrist served as the primary
reinforcer. The strengths of the electric shocks were indi-
vidually set to be unpleasant but not painful. Participants
used their right hand to press the keyboard keys. For the
SD group the choices of the demonstrator were decided
using a simple RL model which learned the task relatively
quickly (see Appendix A.1.1). For the UD group the demon-
strator’s choices were random. For a comparison of demon-
strator performance between groups, see Fig. 1. Thirty
pictures of randomly generated fractals on a black back-
ground were used as choice stimuli (180 � 180 pixels).
For each participant 24 of these were randomly picked
and randomized into 12 stimulus pairs in which one stim-
ulus was randomly selected as the optimal choice. Of these
pairs, 3 were used for a practice block and the other 9 pairs
were divided between the remaining 3 blocks. The photo of
each participant was cropped and resized to
100 � 125 pixels before experiment onset. Photos of the
demonstrators had previously been taken, cropped and
resized in a similar manner.

2.3. Procedure

Participants performed a probabilistic two-choice task
adopted from Burke et al. (2010), differing mainly in the
number of trials and blocks. Also, whereas the original task
included blocks where choices were either punished or
rewarded, using monetary feedback, we only used punish-
ment to reinforce choices. Each trial in the setup consisted
of an initial observation stage during which the demonstra-
tor made his/her choice followed by an action stage during
which the participant made his/her choice. Each pair of
choice stimuli belonged to one of three Observational
Learning conditions depending on the amount of available
observable information: (1) individual learning (No Obser-
vation), (2) observable information of the demonstrator’s
choices (Choice Observation), (3) observable information
of both the demonstrator’s choices and the consequences
of those choices (Choice-Consequence Observation). Apart
from an initial training block, trials were divided into three
blocks; each consisting of three pairs of choice stimuli (one
for each observational learning condition) displayed 15
times each, resulting in a total of 135 trials. During each
stage a photo above the displayed stimuli indicated whose
turn it was to make a choice. The demonstrator’s choices
were shown on the left side of the screen and the partici-
pant’s choices to the right. For each pair of choices, one
was assigned to be the optimal choice and was thus asso-
ciated with a lower probability of being paired with a
shock then the other choice (probabilities were 0.8/0.2
respectively). Fig. 2 displays a detailed description of the
stage phases. Each stage started with a fixation cross
(duration 2–6 s) followed by presentation of the choice
stimuli (duration 2 s). The fixation-cross was then circled
(duration 1 s) as a ‘‘go-signal’’. During the observation
stage the ‘‘go-signal’’ indicated that participants were
required to press a button in order to observe the demon-
strator’s choices and/or consequences, ensuring that they
were attentive to the display. During the action stage the
‘‘go-signal’’ indicated that participants were required to
choose one of the stimuli. When the ‘‘go-signal‘‘ was fol-
lowed by a required response the demonstrator’s or partic-
ipant’s choice (depending on stage) was indicated by
framing the chosen stimuli (duration 1 s). If a required
response was missing, and during No Observation for the
observation stage, both stimuli were framed. Next fol-
lowed the display of a symbol indicating the consequence
(shock or no shock, duration 2 s). For the observation stage
during No Observation and Choice Observation the shock
and no shock symbols were replaced with a non-informa-
tive symbol. For the action stage, the onset of the shock
symbol coincided with the administration of an electric
shock (duration 100 ms) to the participant’s wrist. If the
participant did not make a choice during the action stage
the risk of a shock was 0.5. Participants were informed that
they and the demonstrator were given the same task: to
minimize the number of shocks by trying to select the opti-
mal choice in each pair. Participants were also told that the
demonstrator could never observe their choices or conse-
quences. Importantly, the participants received no infor-
mation regarding the skill of the demonstrator, neither
before nor during the experiment.

2.4. Reinforcement learning modeling

In order to investigate how the experimental manipula-
tion affected decision making on a trial-by-trial basis we
analyzed participant’s choices using RL-modeling based
on the Q-learning algorithm (Sutton & Barto, 1998;
Watkins, 1989) which was extended to include observa-
tional learning in a manner similar to that employed by
Burke et al. (2010). According to the standard Q-learning
algorithm, all available choices are associated with action
values, Q-values, representing their expected conse-
quences. Action values are used as input to the softmax
activation function which is used to calculate the probabil-
ity of making a certain choice. The softmax function
assigns the highest probability to the choice with the best
expected consequence although this is modulated by a
parameter, b, which controls the function’s tendency to
exploit or explore data. During individual learning, the
action value at trial t associated with the choice being
made is updated proportional to the difference between

http://www.pstnet.com


Fig. 3. (a) For both groups, performance levels were higher during
Choice-Consequence Observation compared to No Observation. A differ-
ence in performance between groups was seen during Choice Observation
where the performance level of the SD group was higher compared to the
UD group. (b) The SD group displayed an increased level of imitation
compared to the UD group over both observational conditions. Also,
imitation was higher during Choice Observation compared to Choice-
Consequence Observation for both groups.
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the expected and actual consequence, the prediction error
dconsequence, and a learning rate, aindividual:

Q choiceðt þ 1Þ ¼ Q choiceðtÞ þ aindividual � dconsequencejchoice ð1Þ

After a repeated number of trials, action values can be
said to reflect running estimates of the consequences of
the choices being made. Observational learning was
modeled by including two observational prediction errors:
dobs. conseq., the difference between the expected and obtained
consequence following the demonstrator’s choice, and
dobs. choice, the difference between the expected and observed
choice of the demonstrator. At each trial (where applicable,
see Section 2.3.), observational learning precedes individ-
ual learning. The prediction error following observation
of the consequences of the demonstrator’s choice affects
the action values similarly as during individual learning
using an observational learning rate, aobs. conseq.:

Q obs: choiceðt þ 0:5Þ ¼ Q obs: choiceðtÞ þ aobs: conseq:

� dobs: conseq: ð2Þ

These updated action values are then used to compute
the probabilities of making each choice. The prediction
error following observation of choice is combined with a
learning rate parameter, the imitation rate, aimitation, to
increase the probability of making the same choice as the
demonstrator:

qobs: choiceðtÞ ¼ qobs: choiceðtÞ þ aimitation � dobs: choice ð3Þ

The three different learning rates and the inverse tem-
perature parameter b were included as free parameters.
For all formulated models free parameters where fitted
for each subject over all trials. Models were compared
using Akaike Information Criterion weights (AIC weights).
AIC is an estimate of the quality of a model that includes
a penalty for the number of free parameters the model
contains to balance the trade-off between model complex-
ity and goodness-of-fit (Busemeyer & Wang, 2000). AIC
weights are used to compare a set of models by calculating
the weight of evidence in favor of each model using the
models’ AIC values (Lewandowsky & Farrell, 2010). Model-
ing was conducted using R (R Development Core Team,
2012). For details on models and parameter fitting, see
Appendix.

3. Results

3.1. Statistical results

Behavioral analyses were carried out on trials where the
‘‘go-signal’’ was followed by a required response (see Sec-
tion 2.3. or Fig. 2, phases A.3, B.3.) resulting in a mean
number of trials per participant of 120.77 (SD = 12.10).
Choices were categorized on the basis of performance
(optimal/suboptimal), where a choice was optimal if it
was the choice associated with the lowest risk of shock,
and imitation (imitative/non-imitative), where a choice
was imitative if it was the same as the demonstrator’s
choice (note that imitation is only possible during choices
in the observational conditions). For such binary data,
logistic regression is the preferred analysis method
(Jaeger, 2008) and thus choice data was analyzed using
Logistic Generalized Mixed Models (Baayen, Davidson, &
Bates, 2008) with by-subject random intercept and full
random fixed effects structure (Barr, 2013). All follow up
contrasts were adjusted for multiple comparisons using a
single-step method based on the multivariate normal dis-
tribution (Genz & Bretz, 1999). We began by analyzing
effects on performance. We saw no significant difference
in overall performance between groups (p = 0.62) but we
did find a main effect of Observational Learning Condition
(v2(2) = 21.03, p < 0.001). Follow up contrasts showed that
performance during No Observation was marginally worse
than during Choice Observation (b = �0.18, SE = 0.08,
z = 2.19, p = 0.07) and worse than during Choice-Conse-
quence Observation (b = �0.40, SE = 0.09, z = 4.59,
p < 0.001). Performance during Choice-Consequence
Observation was better than during Choice Observation
(b = 0.21, SE = 0.09, z = 2.42, p = 0.04). Our hypothesis that
the effect of demonstrator skill would be most apparent
under Choice Observation was confirmed by a
Group � Observational Learning Condition interaction
(v2(2) = 8.00, p = 0.02) driven mainly by a marginal differ-
ence in performance at the Choice Observation condition
(follow up contrasts: b = 0.50, SE = 0.24, z = 2.11, p = 0.10)
where the SD group performed better than the UD group,
see Fig. 3a. There were no group differences in perfor-
mance during No Observation or Choice-Consequence
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Observation (p = 0.93). Within-group comparisons showed
that for the SD group, performance during No Observation
was significantly worse than during Choice Observation
(b = �0.51, SE = 0.19, z = �2.63, p = 0.02) and marginally
worse than during Choice-Consequence Observation
(b = �0.40, SE = 0.19, z = �2.16, p = 0.08). Performances
during Choice Observation and Choice-Consequence
Observation did not differ. For the UD group, performance
during No Observation did not differ from performance during
Choice Observation but was marginally lower than during
Choice-Consequence Observation (b = �0.39, SE = 0.19,
z = �2.07, p = 0.10). Performance during Choice Observa-
tion was lower than during Choice-Consequence Observa-
tion (b = �0.51, SE = 0.17, z = �2.99, p = 0.01). Thus, our
analyses show that both groups performed better when
the amount of observable information increased. Observ-
ing an unskilled, as compared to a skilled, demonstrator
led to impaired performance only during Choice Observa-
tion although it was still on par with the performance
during No Observation. This suggests that participants
were able to proficiently modulate behavior so that obser-
vable information was used in a manner that improved
performance.

To examine if this modulation of behavior occurred over
time, we analyzed the interaction over blocks and found a
significant Group � Observational Learning Condi-
tion � Block interaction effect (v2(2) = 7.51, p = 0.02), see
Fig. 4a. The interaction was disentangled by analyzing
the Observational Learning Condition � Block interaction
for each group separately. For the SD group we found a sig-
nificant interaction effect (v2(2) = 14.34, p < 0.001) which
resulted from a significant increase in performance over
Fig. 4. (a) The only change in performance over blocks was seen during Choice O
imitation, there was a change over blocks seen in the SD group during Choice O
blocks during Choice Observation (b = 0.67, SE = 0.13,
z = 5.06, p < 0.001). No such increase was seen for either
No Observation or Choice-Consequence Observation. For
the UD group, there were no such time dependent effects;
neither the Observational Learning Condition x Block inter-
action (p = 0.26) nor the simple effect of Block (p = 0.10)
were significant. In sum, this shows that participants that
observed a skilled, but not an unskilled, demonstrator
modulated behavior such that performance improved over
time while observing the demonstrators choices but not
the consequences.

Next, we analyzed the corresponding effects on imita-
tion. We found a main effect of Group on Imitation
(v2(1) = 101.69, p < 0.001) which was the result of a higher
degree of imitation for the SD group compared to the UD
group (b = 1.24, SE = 0.12, z = 10.08, p < 0.001). We also
noted a main effect of Observational Learning Condition
(v2(1) = 28.63, p < 0.001) caused by a higher degree of
imitation during Choice Observation compared to Choice-
Consequence Observation (b = 0.42, SE = 0.08, z = �5.35,
p < 0.001). We found no significant Group � Observational
Learning Condition interaction (p = 0.46), see Fig. 3b,
although we did find a significant Group � Observational
Learning Condition � Block interaction (v2(1) = 4.39,
p = 0.04), see Fig. 4b. To further investigate this interaction
we analyzed it separately for the two groups. For the SD
group, we found a significant Observational Learning
Condition� Block interaction effect (v2(1) = 5.48, p = 0.02).
This was due to an increase in imitation over blocks during
Choice Observation (b = 0.57, SE = 0.14, z = 3.94, p < 0.001)
while there was no change over blocks for Choice-
Consequence Observation. For the UD group, there was
bservation where the SD group increased performance over blocks. (b) For
bservation where imitation increased over blocks.
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no Observational Learning Condition � Block interaction
(p = 0.90) and no main effect of Block (p = 0.11). Thus, par-
allel to the increase in performance, participants observing
a skilled demonstrator over time increased their degree of
imitation while observing the demonstrator’s choices but
not the consequences of those choices. Importantly
though, based on the definition of imitation used here,
we cannot conclude if this is due to copying of the demon-
strators’ choices or the fact that two agents that learn the
same task are more likely to make the same choices even
without copying compared to when one of the agents
behaves randomly.

3.2. Model based results

To further disentangle the effects of demonstrator skill
on the participants’ use of various sources of information
we formulated four different RL-models that combined
individual and observational learning. The RL-models were
based on a basic model of individual learning but included
observational learning from choices and consequences.
Observational learning from the two observational sources
of information was modeled by adding two separate
observational learning rates and calculating two separate
observational prediction errors. The observational models
differed in which sources of information were included
and how they were combined. Two of the models
included only one source of observable information; CH
included observational learning from choices and CO included
observational learning from consequences. The remaining
two models combined both sources of observable
information but did so in different manners during Choice-
Consequence Observation when both sources were
available; CHCO.H was a hybrid model that combined both
sources during Choice-Consequence Observation, CHCO.S
kept the sources separated and disregarded observable
information of choices during Choice-Consequence
Observation (equivalent to the observational RL-model
used by Burke et al., 2010). All observational models and
a baseline model that included only individual learning
were compared by calculating the AIC weight of each
model to provide a measure of the evidence for each model
given the set of models compared, see Table 1.

Based on the mean AIC weight over participants in each
group, CHCO.S was the preferred model for both groups
although the mean rank order and number of wins for
CO indicates that the model which only included observa-
tional learning from observation of consequences also
Table 1
Model comparisons for both groups using mean (M) and standard deviation (SD) o
wins (Wins) when comparing AIC weights for the included models over each partic
weight, rank and number of wins separately.

Model Skilled demonstrator

M SD Rank Win

Individual 0.06 0.13 4.10 2
CH 0.05 0.11 3.90 1
CO 0.25 0.19 2.20 7
CHCO.H 0.19 0.14 2.55 2
CHCO.S 0.45 0.34 2.25 8
provided a high goodness-of-fit. The preferred model,
CHCO.S, was able to predict approximately 68% of partici-
pants’ choices (69% of group SD and 67% of group UD).
Between group comparisons of all the individually fitted
free parameters of the preferred model CHCO.S showed a
significant difference only for the fitted imitation rate val-
ues (two-sample t-test: t(27.34) = 2.24, p = 0.03) where the
SD group had a higher imitation rate than the UD group.

Next, to investigate how observational learning chan-
ged over time we formulated two additional models based
on the preferred model CHCO.S. These included changes
over blocks in either imitation rate, aimitation, or observa-
tional learning rate, aobs. conseq., which was implemented
by allowing the respective learning rates to change linearly
over the blocks of the experiment (see Appendix for
details). Neither of the models yielded any significant
change in goodness of fit compared to CHCO.S for any of
the two groups. Analyses of variance over the changeable
learning rate showed a significant Block � Group interac-
tion for the imitation rate only (F(1) = 15.14, p < 0.001)
not the observational learning rate, see Fig. 5. This interac-
tion was brought about by a significant increase of the imi-
tation rate from first to last block for the SD group (paired
t-test: t(19) = 3.81, p < 0.01, mean increase = 0.20). For the
UD group it remained at a relatively low level although
separated from zero (one sample t-test: t(19) = 24.80,
p < 0.001) indicating that imitation affected participants’
choices in the UD group also at the last block.

To summarize, we found that the model of observa-
tional learning that best described participant’s behavior
in both groups included observational learning from both
choices and consequences, but disregarded observable
information of choices when consequences were observa-
ble. Differences in the fitted model parameters showed
that the SD group imitated the demonstrator to a greater
extent than the UD group. These differences were the
result of an increase of imitation over blocks in the SD
group rather than a decrease of imitation in the UD group.
These results fit well with our behavioral analyses.

4. Discussion

Learning to avoid dangerous situations is crucial for all
animals. If the aversive consequences are sufficiently
costly individual learning through trial and error can be
very risky making observational learning particularly
important in dangerous situations (Webster & Laland,
2008). Here we show for the first time that observational
f AIC weights over participants and mean rank order (Rank) plus number of
ipant. Numbers in bold indicate preferred model for each group according to

Unskilled demonstrator

s M SD Rank Wins

0.04 0.11 4.30 1
0.03 0.05 4.25 0
0.30 0.19 1.95 8
0.24 0.18 2.40 4
0.39 0.28 2.10 7



Fig. 5. Temporal changes of parameters associated with observational learning. Individual parameter values are fitted to the first and last block (block 1 and
3) and change linearly over the middle block (block 2). Error bars show standard error of the mean over each group. Note that the imitation rate and the
observational learning rate have different, although parallel, functions and comparing their exact values is not meaningful.
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avoidance learning is modulated by the skill of the demon-
strator affecting performance during observation of choice
but not during observation of both choice and conse-
quences. Our results indicate that participants were able
to proficiently use observable information. The current
study extends previous studies, which have argued that
learning from secondary reinforcers is similar to learning
from primary reinforcers, both rewarding (O’Doherty,
2004) and punishing (Delgado, Labouliere, & Phelps,
2006) by indicating that this is the case also for observa-
tional avoidance learning.

In support of both empirical (Kameda & Nakanishi, 2003;
Merlo & Schotter, 2003; Mesoudi, 2008; Morgan et al., 2012)
and theoretical (McElreath, Fasolo, & Wallin, 2013; Rendell
et al., 2010) research, we showed that observational learn-
ing improved performance as compared to individual learn-
ing. We found a positive relationship between the amount
of available observable information and the participants’
ability to make the optimal choice in order to minimize
the number of shocks. Importantly, we showed that obser-
vable information improved performance irrespective of
the level of skill of the demonstrator. Thus, even the group
that watched the unskilled demonstrator improved perfor-
mance when the amount of observable information
increased, although only apparent when observation of
consequences was available. Performance while observing
the demonstrator’s choices only was improved when those
choices were informative (skilled demonstrator) and was
not worsened when choices were uninformative (unskilled
demonstrator, random choices). Performance while observ-
ing both the demonstrator’s choices and consequences was
improved regardless of the skill of the demonstrator. This
indicates that the participants were able to make use of
observable information in an adaptive manner. Impor-
tantly, participants did this without explicit information
of the skill of the demonstrator.

We used RL-modeling to disentangle the different
sources of information involved in observational learning:
individual information, observable information of choices
and of consequences. Since the participants’ task was
to learn to select the optimal choice, they needed
information about the contingencies between choices and
consequences, which could be acquired individually or
through observation of the consequences following the
demonstrator’s choices. Also, provided that the demonstra-
tor performs better than random, information about the
contingency between choice and consequences can be
acquired through observation of choices. Varying the dem-
onstrator’s skill thus affected the observable information
so that observation of choices was informative for the SD
group, but not the UD group. It is also worth pointing out
that the choices of the demonstrator also affect the informa-
tion gained from observation of the consequences of those
choices. For example, if the demonstrator selects one choice
more often than the other, which was the case for the SD
group, sampling of observed consequences will be biased
leading to a difference in the ability to learn the contingen-
cies of the two choices compared to random sampling of
observed consequences (Denrell & Le Mens, 2013). Conse-
quently, the SD and UD group in the present study differed
not only in how informative the demonstrators’ choices
were, but also in observational sampling of the conse-
quences of those choices, suggesting that demonstrator skill
might modulate learning from observation of both choices
and consequences. Our results showed that participants
adjusted to the quality of information by modulating learn-
ing from observation of choices. However, we saw no mod-
ulation of learning from observation of consequences. RL
model comparisons indicate that the reason for this could
be that when participants observed the consequences of
the demonstrator’s choices, they only used the observation-
ally learned choice-consequence contingency to guide
selection of choices and did not imitate the skilled, or the
unskilled, demonstrator. This shows the importance of
observational learning of choice-consequence contingen-
cies, a form of learning that appears to influence behavior
in humans as early as 12 months of age (Elsner &
Aschersleben, 2003).

Furthermore, using temporally changing RL-modeling,
we were able to estimate how the modulation of observa-
tional learning developed over time. Both groups had an
initial low level of imitation and the temporal changes con-
sisted of an increase in imitation over time for the SD
group rather than a decrease for the UD group. This effect
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was seen even though participants were not offered any
explicit information of demonstrator skill or overall perfor-
mance which has been common in previous studies (e.g.
Apesteguia et al., 2007).

It is not clear from our data, however, how the available
information was used to guide this modulation of observa-
tional learning. We made an attempt using RL-modeling to
investigate whether participants modulated observational
learning either by learning the value of imitation through
directly experienced consequences or the value of the
demonstrator’s behavior by observing the consequences
the demonstrator suffered, but found no support for either
of the two possible explanations (see Supplementary Infor-
mation). An interesting aspect of our results from the tem-
porally changing RL-models is that although we do not see
any significant differences in the performance levels for
the UD group when comparing individual learning (No
Observation) and learning from observation of choices
(Choice Observation), the imitation rate does not decrease
over time and is separated from zero even at the last block.
This indicates that some participants in the UD group
might imitate the demonstrator’s random behavior even
after observing the demonstrator’s choices and conse-
quences for several blocks. This inclination to imitate ran-
dom behavior deserves further investigation. Is it possible
that this could stem from a difficulty to learn how to use
observable information, either blind imitation (McGregor,
Saggerson, Pearce, & Heyes, 2006), stimulus enhancement,
where a stimulus is somehow rendered attractive or sali-
ent simply by observing a demonstrator interact with it
(Heyes, Ray, Mitchell, & Nokes, 2000), or a combination
of these explanations? A possible route for a more detailed
understanding of how learning is modulated could be to
investigate the effects of demonstrator skill on neural
activity. For example, by combining RL-modeling and fMRI
it would be possible to investigate how demonstrator skill
affects the previously demonstrated choice prediction
error signal in the dorsolateral prefrontal cortex (Burke
et al., 2010).

The results of the present study have important impli-
cations for the understanding of observational learning sit-
uations in real life where we often lack knowledge of the
skill of those we observe and where observable informa-
tion is not always complete, such as when consequences
are delayed. Also, observation of avoidance might be seen
as a special case of lack of observable information, because
successful avoidance is defined by the omission of the neg-
ative consequence. Consequently, it is important not only
to be able to use various sources of information, but also
to judge their value and use them critically. To return to
our initial example, when observing two boxers go head
to head in a fight we would predict that it is possible to
learn by observing both the winner and the loser by adjust-
ing how the observable information influences behavior. A
good idea would be to copy the behavior of the winner but
learn from the consequences of both boxers’ choices.
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Appendix A

Here we describe the details of the RL-modeling and
parameter fitting.
A.1. Computational modeling

All models are based on the standard Q-learning algo-
rithm and observational models are simply extensions of
the baseline model of individual learning.
A.1.1. Individual learning
According to the model of individual learning each pair

of choices (A and B) is associated with q-values represent-
ing the choices’ expected consequences at trial t, Qchoice(t),
initially set to 0. Q-values are used with the softmax func-
tion for binary choices to calculate the probability of
selecting either choice:

qAðtÞ ¼
expðQ AðtÞ=bÞ

expðQ BðtÞ=bÞ þ expðQ AðtÞ=bÞ
ðA:1Þ

where b is the inverse temperature parameter which con-
trols the tendency to explore or exploit data. A low b
increases the tendency to exploit data by increasing the
probability of selecting the choice with the highest q-value.
Following the choice at each trial a prediction error,
dconsequence is calculated as the difference between expected
and actual consequence where we set the value of a shock
to 1 and the value of not being shocked to �1:

dconsequence ¼ consequenceðtÞ � Q selected choiceðtÞ ðA:2Þ

The prediction error is subsequently used to update the
expected consequences of the selected choice using a
learning rate, aindividual:

Q selected choiceðt þ 1Þ ¼ Q selected choiceðtÞ þ aindiv idual

� dconsequence ðA:3Þ

The steps are then repeated for each trial so that the
model learns (depending on parameter values) the conse-
quences associated with each choice and selects choices
accordingly. For the individual model we set aindividual and
b to free parameters and since all observational models
are extensions of the individual model all models include
these two free parameters, see Section A.2. for details on
parameter fitting. Note also that this model of individual
learning is also used to control the demonstrator’s choices
for the SD group. The demonstrator’s parameters where set
a = 0.3, b = 0.4 and the value of the consequences are set to
10 (no shock) and �10 (shock). For the UD group the dem-
onstrator made random choices.
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A.1.2. Observational learning
Observational learning is modeled by extending the

baseline model of individual learning with learning from
observation of choices and observation of consequences
respectively.

A.1.2.1. Learning from observation of choices: When the
demonstrator’s choices are observed during the observa-
tion phase an observational choice prediction error,
dobs. choice, is calculated as:

dobs: choice ¼ 1� qobs: choice ðA:4Þ

which is the difference between the probability of the
actual choice of the demonstrator (which in hindsight is
1 for the observed choice) and the probability that the
model would make the choice given no observable infor-
mation. Note that the observational choice prediction error
is always positive. This prediction error is subsequently
used to shift the probabilities to select either choice at
the action-phase using an imitation rate conceptually sim-
ilar to the learning rate in Eq. (A.3):

pobs: choiceðt þ 0:5Þ ¼ qobs: choiceðtÞ þ aimitation

� dobs: choice ðA:5Þ

punobs: choiceðt þ 0:5Þ ¼ 1� qobs: choiceðt þ 0:5Þ ðA:6Þ

where pobs. choice and punobs. choice represents the probabilities
of making the same choice that the demonstrator made and
the opposite choice. For models that included learning from
observation of choices we set aimitation to a free parameter.
Note that simply extending the model of individual learn-
ing described in A.1.1. by including the calculations from
Eqs. (A.4), (A.5), (A.6) is equivalent with the CH model.

A.1.2.2. Learning from observation of consequences: When
the consequences of the demonstrator’s choices are
observed, an observational consequence prediction error,
dobs. conseq., is calculated as:

dobs: conseq: ¼ consequenceobsðtÞ � Q obs: choiceðtÞ ðA:7Þ

where consequenceobs represents the consequence follow-
ing the demonstrator’s choice set to 1 or �1 depending
on whether or not the demonstrator was presumably given
a shock or not. Next, Q-values were updated based on this
observable information using an observational learning
rate, aobs. conseq., similar to updating described in Eq. (A.3):

Q obs: choiceðt þ 0:5Þ ¼ Q obs: choiceðtÞ þ aobs: conseq:

� dobs: conseq: ðA:8Þ

Subsequently, the probabilities of making either choice
at the action stage are calculated as in Eq. (A.1) using the
updated Q-value. For models that included learning from
observation of consequences we included aobs. conseq. as a
free parameter. Simply extending the model of individual
learning described in A.1.1. by including the calculations
from Eqs. (A.7), (A.8) is equivalent with the CO model.

A.1.2.3. Learning from observation of both choices and
consequences: We formulated two different models that
combined learning from both sources of observable
information. The hybrid model (CHCO.H) combined both
sources simultaneously and thus used all available
information while the separated model (CHCO.S) included
observation of choice at the Choice Observation condition
but only observation of consequences at the Choice-Conse-
quence Observation condition.

A.1.2.3.1. Hybrid observational learning – CHCO.H: Com-
bining both sources of observable information is carried
out such that the probabilities of making either choice at
the action stage are calculated in two steps. First, Q-values
and subsequent probabilities are calculated as in A.1.2.2.
(learning from observation of consequences). Secondly,
the probabilities of making either choice are shifted
according to the calculations described in A.1.2.1. (learning
from observation of choices). This was implemented in the
CHCO.H and included setting both aimitation and aobs. conseq.

to free parameters.
A.1.2.3.2. Separated observational learning – CHCO.S: Sep-

arating learning from the two sources of information was
simply done by letting model behavior during the
Choice-Consequence Observation condition be imple-
mented as in A.1.2.2. (learning from observation of conse-
quences) while behavior at the Choice Observation
condition was implemented as in A.1.2.1. (learning from
observation of choices): This incorporated both sources of
information in the model although not simultaneously.
This was implemented in the CHCO.S model and included
setting both aimitation and aobs. conseq. to free parameters.

A.1.2.4. Temporally changing learning from observation of
both choices and consequences: The two models that tested
whether or not observational learning changed over time
where implemented by letting the parameter of interest
(either aimitation or aobs. conseq.) in the CHCO.S model vary
over the three blocks of the experiment. This was done
by replacing the parameter of interest with two free
parameters, one for the first block and one for the last
block. For the middle block, the parameter was calculated
as lying in between. The models were fitted as before on
all trials over all blocks per person. The result can be
described as fitting a linearly changing parameter that
was kept constant throughout each block. The reason the
parameter was kept constant throughout each block was
to avoid picking up temporal changes that could be derived
from the shift in task that occurred over the course of a
block. For instance, learning from observation of conse-
quences might drop over the course of a block when the
participant had already learnt the choice-consequence
contingency. For these two models based on the CHCO.S
model we replaced either the free parameter aimitation

with aimitation(F) (first) and aimitation(L) (last) or aobs. conseq with
aobs. conseq(F) and aobs. conseq(L).

A.2. Parameter fitting and model comparisons

A.2.1. Parameter fitting
All free parameters were constrained within the inter-

val (0,1) and fitted for each participant over all trials by
minimizing the negative log-likelihood, �ln(L), of each
model. This was done in R (R Development Core Team,
2012) using the mle2 function from the bbmle package
employing the optim optimization function and the BFGS
optimization method. To avoid local minima, we fitted



Table A.1
Inclusion of a parameter in a model is marked with an x.

Models Free parameters

aindividual b aimitation aobs. conseq. aimitation(F) aimitation(L) aobs. conseq.(F) aobs. conseq.(L)

Individual x x – – – – – –
CH x x x – – – – –
CO x x – x – – – –
CHCO.H x x x x – – – –
CHCO.S x x x x – – – –
CHCO.t (choice) x x – x x x – –
CHCO.t (cons.) x x x – – – x x
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each set of parameters 40 times with randomized initial
parameters and then choose the best fitted parameters.
For an overview of which free parameters that were
included in each model, see Table A.1.

A.2.2. Model comparisons
Model comparisons were carried out in order to inves-

tigate to which extent the different sources of information
affected choices and thus did not include the models that
looked at the temporal changes. In order to compare the
different RL models we calculated the AIC weights, wAICi,
for each model and participant (Wagenmakers, Farrell, &
Ratcliff, 2005). AIC weights are calculated using the AIC
values that measure the goodness of fit of a model while
also taking into account its complexity:

AIC ¼ 2k� 2In ðA:9Þ

where k is the number of fitted parameters and �ln(L) is
the negative log-likelihood. For each model i DAICi is calcu-
lated as DAICi = AICi � AICmin were the AICmin is the AIC
value for the best model (i.e. the model with the lowest
AIC value) for that participant. AIC weights are then calcu-
lated by comparing the AIC values for all five models of
interest over each participant:

wAICi ¼ exp
�DAICi

2

� � XM

m¼1

exp
�DAICm

2

� �,
ðA:10Þ

where M denotes the number of models compared. AIC
weights provide a measure of the weight of evidence for
each model in a given set of candidate models and we com-
pared models by looking at the mean and standard devia-
tion of wAICi, mean rank order and number of wins across
participants.

Appendix B. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.cognition.2014.06.010.
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